
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 11: Large-Scale Data Processing
Part 3: Spark

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Spark: Generalizing MapReduce

CS 417 © 2023 Paul Krzyzanowski 2

MapReduce problems
• Not efficient when multiple passes needed

• Problems need to be converted to a series of Map & Reduce operations

• The next phase can never start until the previous has completed

• Output needs to be stored in the file system before the next step starts
– Storage involves disk writes & replication

• Possibly unnecessary stages, such as when map simply passes <key, value>
results from the previous reduce

3

Map Reduce Map ReduceMap Reduce

CS 417 © 2023 Paul Krzyzanowski

Apache Spark Goals
• Generalize MapReduce
– Similar shard-and-gather approach to MapReduce
– Create multi-step pipelines based on directed acyclic graphs (DAGs) of data flows

• Create a general functional programming model
– Transformation and action
– In MapReduce, transformation = map, action = reduce
– In Spark, support operations beyond map and reduce

• Add fast data sharing
– In-memory caching
– Different computation phases can use the same data if needed

• And generic data storage interfaces
– Storage agnostic: use HDFS, Cassandra database, whatever
– Resilient Distributed Data (RDD) sets
• An RDD is a chunk of data that gets processed – a large collection of stuff

4CS 417 © 2023 Paul Krzyzanowski

Spark Design: RDDs
RDD: Resilient Distributed Datasets
– Table that can be sharded (split) across many servers
– Holds any type of data
– Immutable: you can process the RDD to create a new RDD but not modify the original

Two operations on RDDs
1. Transformations: transformation function takes RDD as input & creates a new RDD: RDD→RDD′
• Examples: map, filter, flatMap, groupByKey, reduceByKey, aggregateByKey, ...

2. Actions: evaluates an RDD and creates a value: RDD→result
• Examples: reduce, collect, count, first, take, countByKey, ...

Shared variables
– Broadcast Variables: define read-only data that will be cached on each system
– Accumulators: used for counters (e.g., in MapReduce) or sums
• Only the driver program can read the value of the accumulator

5CS 417 © 2023 Paul Krzyzanowski

High-level view
• Job = bunch of transformations & actions on RDDs

6

Client (Driver Program)

Client
app

Spark
Context

Spark Cluster
Manager

Job

CS 417 © 2023 Paul Krzyzanowski

Job

High-level view
• Cluster manager breaks the job into tasks

• Sends tasks to worker nodes where the data lives

7

Client (Driver Program)

Client
app

Spark
Context

Spark Cluster
Manager

Workers

Task

Task

Task

Task

Job

CS 417 © 2023 Paul Krzyzanowski

Worker node
One or more executors. Each executor:
– Runs as a JVM (Java Virtual Machine) process
– Talks with the Spark cluster manager
– Receives tasks
• JVM code

(e.g., compiled Java, Clojure, Scala, JRuby, …)
• Task = transformation or action

– Gets data to be processed: the RDD
– Has its own cache
• Stores results in memory
• Key to high performance

8

Executor

Task

Cache

Task Task

Local data

Cluster Manager

CS 417 © 2023 Paul Krzyzanowski

Worker node

9CS 417 © 2023 Paul Krzyzanowski

Lo
ca

l H
DF

S
da

ta

C
lu

st
er

M

an
ag

er

Executor – JVM

Task

Cache

Task Task

Executor – JVM

Task

Cache

Task Task

Worker Node

Data & RDDs
• Data organized into RDDs
– One RDD may be partitioned across lots of computers

• How are RDDs created?
– Create it from any file stored in HDFS or other storage supported in Hadoop

(Amazon S3, HDFS, HBase, Cassandra, etc.)
• Created externally (e.g., text files, SQL or NoSQL database)
• Examples:

– Query a database & make the query results into an RDD
– Any Hadoop InputFormat, such as a list of files or a directory

– Streaming sources (via Spark Streaming)
• Fault-tolerant stream with a sliding time window

– Output of a Spark transformation function
• Example, filter out data, select key-value pairs

CS 417 © 2023 Paul Krzyzanowski 10

Properties of RDDs

Immutable • You cannot change it – only create new RDDs
• The framework will eventually collect unused RDDs

Partitioned
Parts of an RDD may go to different servers
• Splits can be range-based or hash-based
• For hash-based, default partitioning function = hash(key) mod server_count

Dependent Created from – and thus dependent on – other RDDs
• Either original source data or computed from one or more other RDDs

Fault tolerant Original RDD in stable storage; other RDDs can be regenerated if needed

Persistent Optional for intermediate RDDs
• Original data is persistent. Intermediate data can be marked to be persistent

Typed Contains some parsable data structure – e.g., a key-value set

Ordered (optional) Elements in an RDD can be sorted

CS 417 © 2023 Paul Krzyzanowski 11

Operations on RDDs
Two types of operations on RDDs:

• Transformations: create new RDDs
– Lazy: computed when needed, not immediately
– Transformed RDD is computed when an action is run on it
• Work backwards:
– What RDDs do you need to apply to get an action?
– What RDDs do you need to apply to get the input to this RDD?

– RDD can be persisted into memory or disk storage

• Actions: create result values
– Finalizing operations
• Reduce, count, grab samples, write to file

CS 417 © 2023 Paul Krzyzanowski 12

Spark Transformations
Transformation Description

map(func) Pass each element through a function func

filter(func) Select elements of the source on which func returns true

flatmap(func) Each input item can be mapped to 0 or more output
items

sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without
replacement, using a given random number generator
seed

union(otherdataset) Union of the elements in the source data set and
otherdataset

intersection(otherdataset) The elements that are in common to two datasets

13CS 417 © 2023 Paul Krzyzanowski

Spark Transformations
Transformation Description

groupByKey([numtasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K,
seq[V]) pairs

reduceByKey(func, [numtasks]) Aggregate the values for each key using the given reduce
function

sortByKey([ascending], [numtasks]) Sort keys in ascending or descending order

join(otherDataset, [numtasks]) Combines two datasets, (K, V) and (K, W) into (K, (V, W))

cogroup(otherDataset, [numtasks]) Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])

cartesian(otherDataset) For two datasets of types T and U, returns a dataset of (T, U)
pairs

14CS 417 © 2023 Paul Krzyzanowski

Spark Actions
Action Description

reduce(func) Aggregate elements of the dataset using func.

collect(func, [numtasks]) Return all elements of the dataset as an array

count() Return the number of elements in the dataset

first() Return the first element of the dataset

take(n) Return an array with the first n elements of the
dataset

takeSample(withReplacement, fraction, seed) Return an array with a random sample of num
elements of the dataset

15CS 417 © 2023 Paul Krzyzanowski

Spark Actions
Action Description

saveAsTextFile(path) Write dataset elements as a text file

saveAsSequenceFile(path) Write dataset elements as a Hadoop SequenceFile

countByKey () For (K, V) RDDs, return a map of (K, Int) pairs with the count of
each key

foreach(func) Run func on each element of the dataset

16CS 417 © 2023 Paul Krzyzanowski

Data Storage

• Spark does not care how source data is stored
– RDD connector determines that
– E.g.,

read RDDs from tables in a Cassandra DB;
write new RDDs to HBase tables

• RDD Fault tolerance
– RDDs track the sequence of transformations used to create them
– Enables recomputing of lost data
• Go back to the previous RDD and apply the transforms again
• Dependencies tracked by Spark in a directed acyclic graph (DAG)

17CS 417 © 2023 Paul Krzyzanowski

• Transform (creates new RDDs)
– Extract error message from a log
– Parse out the source of error

• Actions: count mysql & php errors

CS 417 © 2023 Paul Krzyzanowski 18

Example: processing logs

// base RDD
val lines = sc.textFile("hdfs://...”)

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()

Initial RDD – our data source

Extract only lines starting with ERROR

Split string by tabs.
Then extract string after the ERROR
Cache the results:

default is memory and disk as an overflow

Filter transformation to extract lines
Containing "mysql" – then count them

Filter transformation to extract lines
Containing "php" – then count them

Spark Ecosystem
• Spark Streaming: process real-time streaming data
– Micro-batch style of processing
– Uses DStream: series of RDDs

• Spark SQL: access Spark data over JDBC API
– Use SQL-like queries on Spark data

• Spark Mlib: machine learning library
– Utilities for classification, regression, clustering, filtering, ...

• Spark GraphX: graph computation
– Adds Pregel API to Spark
– Extends RDD by introducing a directed multi-graph with properties attached to each

vertex & edge
– Set of operators to create subgraphs, join vertices, aggregate messages, ...

19CS 417 © 2023 Paul Krzyzanowski

Spark Streaming
• MapReduce & Pregel expect static data

• Spark Streaming enables processing live data streams
– Same programming operations
– Input data is chunked into batches
• Programmer specifies time interval

20CS 417 © 2023 Paul Krzyzanowski

Spark Streaming Spark Engine

Input data
steam

Batches of
input data

Batches of
processed data

Spark Streaming: DStreams
Discretized Stream = DStream
– Continuous stream of data (from source or a transformation)
– Appears as a continuous series of RDDs, each for a time interval

– Each operation on a DStream translates to operations on the RDDs

– Join operations allow combining multiple streams
21CS 417 © 2023 Paul Krzyzanowski

Spark Summary
• Fast
– Often up to 10x faster on disk and 100x faster in memory than

MapReduce
– General execution graph model
• No need to have ”useless” phases just to fit into the model

– In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated
– You know what the input data set was, what transformations were applied

to it, and what output it creates

• Supports streaming
– Handle continuous data streams via Spark Streaming

22CS 417 © 2023 Paul Krzyzanowski

The End

23CS 417 © 2023 Paul Krzyzanowski

