
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 7: Memory Corruption &
 Code Injection

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 2

Hijacking & Injection
Part 1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hijacking & Injection
Hijacking: Taking control of a process by intercepting, manipulating, or redirecting
its intended behavior for unintended purposes without injecting new code
• Session hijacking: take over someone’s authenticated session
– Snoop on a communication session to get authentication info
– Access someone’s cookies for a web session
– Perform an Adversary-in-the-Middle (AitM) attack to let a user log in and use that session

• Control flow hijacking: alter program execution
– Use return-to-libc or return-oriented programming techniques to alter execution

• Other forms of hijacking
– Browser redirection hijacking: Redirect a victim’s web browser to a malicious site
– Domain hijacking: Change DNS (IP address lookup) results to direct users to malicious addresses
– Search Engine Poisoning: Change the browser’s default search engine

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hijacking & Injection
Injection
Inserting arbitrary code or commands into a process to execute unintended operations

• Command injection: get a process to run arbitrary system commands
– Send commands to a program that are then executed by the system shell
– Includes SQL injection – send database commands

• Code injection: get a process to run arbitrary code
– Overflow an input buffer and cause new code to run
– Provide JavaScript as input that will later get executed (Cross-site scripting)

• Library injection: have a process run with different linked libraries
– Alter the search path or force a program to load alternate DLL/shared libraries

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Security-Sensitive Programs & Remote Services
Hijacking or injection isn’t interesting for regular programs on your system
– You might as well just run the commands from the shell or write a program

• It is interesting if
– The program runs with elevated privileges (setuid), especially if it runs as root
– Runs on a system you don’t have access to (most servers)
• This is Remote Code Execution (RCE)

• It is super interesting if
– The program runs with elevated privileges on a remote system you can’t access directly

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 5

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Bugs and mistakes
• Most attacks are due to
– Social engineering: getting a legitimate user to do something
– Or exploiting vulnerabilities: using a program in a way it was not intended
• This includes buggy security policies

• An attacked system may be further weakened because of poor access
control rules
– Allowing the attacker to do more than the compromised application – a violation of the

Principle of Least Privilege

• Cryptography won’t save us!
– And cryptographic software can also be buggy

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 6

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Unchecked Assumptions
• Unchecked assumptions can lead to vulnerabilities
– Vulnerability: weakness that can be exploited to perform unauthorized actions

• Attack
– Discover these assumptions
– Craft an exploit to render them invalid … and run the exploit

• Four common assumptions:
1. The buffer is large enough for the data
2. Integer overflow doesn’t exist
3. User input will never be processed as a command
4. A file is in a proper format

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 7

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory Corruption Vulnerabilities
• Buffer overflow
– Writing more data to a buffer than it can hold, leading to overwriting adjacent memory

• Heap attacks
– Exploit vulnerabilities in dynamic memory allocation
– Heap overflow: write beyond allocated space (a buffer overflow)
– Use-After-Free: access memory after it’s been freed (and possibly reallocated)

• Integer overflow/underflow
– Arithmetic operation exceeds the maximum or minimum value a data type can hold
– This can lead to unexpected behavior like buffer overflows or bad logic

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer Overflow

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 9

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

What is a buffer overflow?
Programming error that allows more data to be stored in an array than
there is allocated space for the object

• Buffer = chunk of memory on the stack, heap, or static data

• Overflow means adjacent memory will be overwritten
– Program data can be modified
– New code can be injected
– Unexpected transfers of control can be launched

10March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows
Buffer overflows used to be responsible for ~50% of vulnerabilities

• We know how to defend ourselves but
– Average time to discover and patch a bug is more than 1 year
– People delay updating systems … or refuse to
– Embedded systems often never get patched
• Routers, cable modems, set-top boxes, access points, IP phones, and security cameras

– Embedded systems often don’t defend against this (in the name of efficiency)
– Insecure access rights often help with gaining access or more privileges
– We continue to write buggy code!

11March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

cve.mitre.org reports 125 CVE records for buffer overflows in 2025 so far
1,284 vulnerabilities in 2024

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows … still happening in 2025
Feb 19, 2025: CVE-2025-0999, and CVE-2025-1426
– Heap buffer overflow in Google Chrome browser
– Allows attackers to execute arbitrary code and seize control of affected systems.

Jan 22, 2025: CVE-2025-20128
– Cisco ClamAV anti-virus software – heap buffer overflow
– Can lead to a denial-of-service attack

Jan 21, 2025: CVE-2024-54887
– Stack buffer overflow on TP-Link TL-WR940N routers
– Allows authenticated attackers to execute arbitrary code remotely.

Jan 15, 2025: CVE-2024-12084 (9.8)
– Rsync file synchronization software heap buffer overflow
– Improper checksum length handling can lead to arbitrary code execution on a server

Jan 9, 2025: CVE-2025-0282
– Stack-based buffer overflow in Ivanti Connect Secure, Policy Secure, and Neurons for ZTA
– Allows a remote unauthenticated attacker to achieve remote code execution

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 12

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows … a few examples from 2024
Sep 9, 2024: CVE-2017-1000253
– Linux Kernel PIE Stack Buffer Corruption Vulnerability
– May cause a system crash or remotely execute code

Jul 22, 2024: CVE-2024-35467
– Stack-based buffer overflow in ASUS's RT-AC87U devices
– May cause a system crash or remotely execute code

May 8, 2024: CVE-2024-4559
– Heap buffer overflow in WebAudio in Google Chrome
– An attacker could exploit this via a crafted HTML page.

Apr 26, 2024: CVE-2024-25048
– Heap buffer overflow in IBM MQ
– caused by improper bounds checking.
– A remote authenticated attacker could overflow a buffer and

execute arbitrary code on the system or cause the server to crash.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 13

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows … a few examples from 2024
Dec 10, 2024: CVE-2024-49138
– Windows Common Log File System (CLFS) heap buffer overflow
– Heap overflow and free memory reuse allows hijacking function pointers for arbitrary code execution

Sep 13, 2024: CVE-2025-42642 (9.8)
– Stack buffer overflow on Crucial MX500 Series Solid State Drives
– An attacker can corrupt data, gain unauthorized access, or complete system compromise

Sep 23, 2024: CVE-2024-7490 (9.5)
– Microchip Advanced Software Framework (ASF) – stack buffer overflow
– Remote code execution via tinydhcp server – software is no longer supported (but widely deployed)

June 20, 2024: CVE-2024-0762
– Phoenix SecureCode UEFI firmware buffer overflow
– Tens of millions of Intel-based laptops vulnerable to malicious code execution

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 14

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow affecting UEFI
Jan 17, 2024: PixieFail
– Collection of 9 vulnerabilities that affect UEFI
• Computer firmware that runs the bootloader

– Includes 3 buffer overflows
• Choosing an overly long Server ID option in the DHCPv6client
• Processing DNS Servers option in a DHCPv6
• handling a Server ID option from a DHCPv6 proxy Advertise message

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 16

https://arstechnica.com/security/2024/01/new-uefi-vulnerabilities-send-firmware-devs-across-an-entire-ecosystem-scrambling/2/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow affecting dynamic loading
October 5, 2023
– GNU C Library's dynamic loader
– Affects the processing of the GLIBC_TUNABLES environment

variable, a feature introduced in glibc to allow users to fine-tune
the library's behavior at runtime.

– "Can allow attackers to gain root privileges, enabling
unauthorized data access, alteration or deletion and potentially
leveraging further attacks by escalating privileges"

– Easily exploitable, and arbitrary code execution is a real and
tangible threat

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 17

https://www.infosecurity-magazine.com/news/critical-glibc-bug-puts-linux-risk/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows: SigRed – a 17-year-old bug!
July 28, 2020 – SIGRed vulnerability
– Exploits buffer overflow in Windows DNS Server processing

of SIG records
• A field that holds a signature for use with secure DNS

– Allows an attacker to create a denial-of-service attack
– Bug existed for 17 years – discovered in 2020!
• A function expects 16-bit integers to be passed to it
• If they are not the proper size, it will overflow other integers
• Attacker needs to create a DNS response that contains a SIG

record > 64KB

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 21

https://www.assurainc.com/a-vulnerability-called-sigred-cve-2020-1350-exploits-a-buffer-overflow-within-the-way-that-windows-dns-servers-process-sig-resource-record-types/amp-on/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

25

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

WhatsApp vulnerability
exploited to infect phones
with Israeli spyware
Attacks used app's call function. Targets didn't have
to answer to be infected.
DAN GOODIN - 5/13/2019, 10:00 PM

Attackers have been exploiting a vulnerability in WhatsApp that allowed them to infect phones with advanced spyware made by
Israeli developer NSO Group, the Financial Times reported on Monday, citing the company and a spyware technology dealer.

A representative of WhatsApp, which is used by 1.5 billion people, told Ars that company researchers discovered the vulnerability
earlier this month while they were making security improvements. CVE-2019-3568, as the vulnerability has been indexed, is a buffer
overflow vulnerability in the WhatsApp VOIP stack that allows remote code execution when specially crafted series of SRTCP
packets are sent to a target phone number, according to this advisory.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2019 WhatsApp Buffer Overflow Vulnerability
• WhatsApp messaging app could install malware on Android, iOS,

Windows, & Tizen operating systems
An attacker did not have to get the user to do anything: the attacker just places a
WhatsApp voice call to the victim.

• This was a zero-day vulnerability
– Attackers found & exploited the bug before the company could patch it

• WhatsApp used by 1.5 billion people
– Vulnerability discovered in May 2019 while developers were making security

improvements

26

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buggy libraries can affect a lot of code bases

July 2017 – Devil's Ivy
(CVE-2017-9765)
– gsoap open source toolkit
– Enables remote attacker to execute

arbitrary code
– Discovered during the analysis of an

internet-connected security camera

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 28

https://latesthackingnews.com/2017/07/18/millions-of-iot-devices-are-vulnerable-to-buffer-overflow-attack/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The classic buffer
overflow bug

gets.c from macOS:
© 1990,1992 The Regents of the University of California.
gets(buf)
char *buf;
 register char *s;
 static int warned;
 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {
 (void) write(STDERR_FILENO, w, sizeof(w) - 1);
 warned = 1;
 }
 for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;
 *s = 0;
 return (buf);
}

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 29

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;
 register char *s;
 static int warned;
 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {
 (void) write(STDERR_FILENO, w, sizeof(w) - 1);
 warned = 1;
 }
 for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;
 *s = 0;
 return (buf);
}

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 32

for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;

for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;

Note there’s no check for the
length of the buffer!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 33

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 34

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp
Enter a word:abcdefg
Read 7 characters.
x: efg
y: abcdefg
z: dog

The data in y overflowed to x
x got corrupted

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 35

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp
Enter a word:abcdefghijklmnopqrstuvwxyz0123456789
Read 36 characters.
x: efghijklmnopqrstuvwxyz0123456789
y: abcdefghijklmnopqrstuvwxyz0123456789
z: dog
Bus error: 10

With even more data,
x got corrupted
AND the program crashed!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow examples

36

void test(void) {
 char name[10];

 strcpy(name, "krzyzanowski");
}

That’s easy to spot!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Another example

37

char configfile[256];
char *base = getenv("BASEDIR");

if (base != NULL)
 sprintf(configfile, "%s/config.txt", base);
else {
 fprintf(stderr, "BASEDIR not set\n");
}

How about this?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow attacks
To exploit a buffer overflow, identify if there’s an overflow vulnerability
in a program
– Black box testing
• Trial and error
• Fuzzing tools (more on that …)

– Inspection
• Study the source
• Trace program execution

Understand where the buffer is in memory and whether there is
potential for corrupting surrounding data

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 38

You have access to
the source

You don’t have access
to the source

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

What’s the harm?
Execute arbitrary code, such as starting a shell

Code injection, stack smashing
– Code runs with the privileges of the program
• If the program is setuid root then you have root privileges
• If the program is on a server, you can run code on that server

• Even if you cannot inject code…
– You may crash the program (Denial of Service attack)
– Change how it behaves
– Modify data

• Sometimes the crashed code can leave a core dump
– You can access that and grab data the program had in memory

39March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Note: this test did not succeed

Taking advantage of unchecked bounds

40

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
 char pass[5];
 int correct = 0;

 printf("enter password: ");
 gets(pass);
 if (strcmp(pass, "test") == 0) {
 printf("password is correct\n");
 correct = 1;
 }
 if (correct) {
 printf("authorized: running with root privileges...\n");
 exit(0);
 }
 else
 printf("sorry - exiting\n");
 exit(1);
}

$./buf
enter password: abcdefghijklmnop
authorized: running with root privileges...

Run on my Raspberry Pi 5
 Debian 1:6.6.74-1+rpt1
 6.6.74+rpt-rpi-2712

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

It’s a bounds checking problem
• C and C++
– Allow direct access to memory
– Do not check array bounds
– Functions often do not even know array bounds
• They just get passed a pointer to the start of an array

• This is not a problem with strongly typed languages
– Java, C#, Python, etc. check sizes of structures

• But C is in the top 4-5 of popular programming languages
– #1 for system programming & embedded systems
– And most compilers, interpreters, databases, browsers, and libraries are written

in C or C++

41March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 42

Anatomy of overflows
Part 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Linux process memory map*

43

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execveCommand-line args & environment
variables

*Not to scale

Top of stack (it grows down)

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The stack
func(param_1, param_2, param_3)

Calling function:
 pushl param_3
 pushl param_2
 pushl param_1
 call func
 . . .

Called function:
func: pushl rbp
 movl %rsp, %rbp
 subl $20, %rsp
 . . .
 movl %rbp, %rsp
 pop %rbp
 ret

Previous return address

Previous frame pointer

param_3

param_2

param_1

Return address
Saved rbp (frame

pointer)
Local variable a

Local variable b

Local variable c rsp
(current stack pointer)

rbp
(current frame pointer)

High memory

Low memory

44

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

What’s a frame pointer?
• Frame pointer: a register that points to the base of the current function’s stack frame
– Provides a stable reference for accessing function parameters and local variables

(as offsets from the frame pointer) even as the stack pointer changes during execution

• The current frame pointer is saved on the stack when a function is called
– When a function returns, it:
• Restores the stack pointer to the current frame pointer
• Restores the saved frame pointer
• Returns from the function, popping the return value from the stack to the program counter

• The danger of overwriting a saved frame pointer
– The restored frame pointer can point to a fake stack structure
• Corrupting stack unwinding – changing function return sequences or crashes
• Control flow hijacking – redirect it to malicious code or other areas of execution

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 45

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Causing overflow

Overflow can occur when programs do not validate the
length of data being written to a buffer

This could be in your code or one of several “unsafe” libraries
– strcpy(char *dest, const char *src);

– strcat(char *dest, const char *src);

– gets(char *s);

– scanf(const char *format, …)

– Others…

46March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overflowing the buffer

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 47

void func(char *s) {
 char buf[128];

 strcpy(buf, s);
 /* ... */
}

What if strlen(s) is >127 bytes?
You overwrite the saved rbp and then the return address

Return address

Previous frame pointer

parameter (s)

Return address

Saved rbp (frame pointer)

char buf[128] rsp (current stack pointer)

rbp (current frame pointer)

High memory

Low memory

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overwriting the return address
• If we overwrite the return address
– We change what the program executes when it returns from the function

• “Benign” overflow
– Overflow with garbage data
– Chances are that the return address will be invalid
– Program will die with a SEGFAULT
– Availability attack

48March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Programming at the machine level
• High level languages (even C) constrain you in
– Access to variables (local vs. global)
– Control flows in predictable ways
• Loops, function entry/exit, exceptions

• At the machine code level
– No restriction on where you can jump
• Jump to the middle of a function … or to the middle of a C statement
• Frame pointer will be restored to whatever address is on the stack before the return
• Returns will go to whatever address is on the top of the stack
• Unused code can be executed (e.g., library functions not used by the program)

49March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Subverting control flow
Malicious overflow
– Fill the buffer with malicious code

– Overflow to overwrite saved frame
pointer %rbp

– Then overwrite saved the stack pointer
(the return address) with the address of
the malicious code in the buffer

50

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Subverting control flow: more code
If you want to inject a lot of code
Just go further down the stack (into higher memory)

– Initial parts of the buffer will be
garbage data … we just need to fill the buffer

– Then we have the new return address

– Then we have malicious code

– The return address points to the malicious code

51

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

Junk … we don’t care what
goes here – we just need to

overflow this buffer

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

MALICIOUS CODE
… still part of the

overflow of buf[128]

Start of buf[128]

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Address Uncertainty
What if we’re not sure what the exact
address of our injected code is?

NOP slide = NOP sled = landing zone
– Pre-pad the code with lots of NOP

instructions
• NOP
• moving a register to itself
• adding 0
• etc.

– Set the return address on the stack to any
address within the landing zone

52

MALICIOUS CODE
(still part of the

overflow of buf)

Return address

Saved rbp (frame pointer)

char buf[128]

OVERFLOW JUNK

High memory

Low memory

OVERFLOW JUNK

Overwritten return
addressO

ve
rw

rit
te

n
ar

ea NOP – NOP – NOP – NOP

NOP – NOP – NOP – NOP
NOP – NOP – NOP – NOP

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one overflows

53March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one overflow
Feb. 2, 2021: Linux sudo
– Heap-based buffer overflow vulnerability
– An attacker could exploit this vulnerability to

take control of an affected system.

– Off-by-one error
• Can result in a heap-based buffer overflow,

which allows privilege escalation to root via
"sudoedit -s" and a command-line
argument that ends with a single backslash
character.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 54

https://www.cisa.gov/uscert/ncas/current-activity/2021/02/02/sudo-heap-based-buffer-overflow-vulnerability-cve-2021-3156

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Safe functions aren’t always safe
• Safe counterparts require a count
– strcpy → strncpy
– strcat → strncat
– sprintf → snprintf

• But programmers can miscount!

55

char buf[512];
int i;

for (i=0; i<=512; i++)
 buf[i] = stuff[i];

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one errors
• We can’t overwrite the return address

• But we can overwrite one byte of the saved frame pointer
– Least significant byte on Intel/ARM systems
• Little-endian architecture

What’s the harm of overwriting
one byte of the frame pointer?

56

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one errors: frame pointer mangling
At the end of a function:
– The compiler resets the stack pointer (%rsp) to the base of the frame (%rbp):

 movl %rbp, %rsp
– and restores the saved frame pointer (which we corrupted) from the top of the stack:

 pop %rbp pops corrupted frame pointer into rbp, the frame pointer
 ret

The program now has the wrong frame pointer when the function returns

The function returns normally –
we could not overwrite the return address

BUT … when the function that called it tries to return, it will update
the stack pointer to what it thinks was the valid base pointer and
return there:

 mov %rsp, %rbp rbp is our corrupted FP that is now the stack pointer
 pop %rbp we don’t care about the base pointer
 ret return pops the stack from our buffer, so we can jump anywhere

57March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one errors: frame pointer mangling
• Stuff the buffer with
– Malicious code, pointed to by “saved” %rip (instruction pointer)
– “saved” %rbp (can be garbage)
– “saved” %rip (return address)
– 1 byte overflow to have the saved FP point to the buffer

• When the function’s calling function returns
– It will return to the “saved” %rip, which

points to malicious code in the buffer

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 58

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap & text overflows

59March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Linux process memory map

60

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execve

Command-line args & environment
variables

• Statically allocated variables &
dynamically allocated memory
(malloc) are not on the stack

• Heap data & static data do not
contain return addresses
– No ability to overwrite a return

address

Are we safe?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory overflow

61

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char a[15];
char b[15];

int
main(int argc, char **argv)
{
 strcpy(b, "abcdefghijklmnopqrstuvwxyz");
 printf("a=%s\n", a);
 printf("b=%s\n", b);
 exit(0);
}

a=qrstuvwxyz
b=abcdefghijklmnopqrstuvwxyz

The program

The output
(Linux 4.4.0-59, gcc 5.4.0)

We may be able to overflow a
buffer and overwrite other
variables in higher memory

For example, overwrite a file
name

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory overflow – filename example

62

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char afile[20];
char mybuf[15];

int main(int argc, char **argv)
{
 strncpy(afile, "/etc/secret.txt", 20);
 printf(”Planning to write to %s\n", afile);
 strcpy(mybuf, "abcdefghijklmnop/home/paul/writehere.txt");
 printf("About to open afile=%s\n", afile);
 exit(0);
}

Planning to write to /etc/secret.txt
About to open afile=/home/paul/writehere.txt

The program

The output
(Linux 5.10.63, gcc 8.3.0)

mybuf can overflow into afileWe overwrote the file
name afile by writing
too much into mybuf!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overwriting variables: changing control flow
• Even if a buffer overflow does not touch the stack, it can modify

global or static variables

• Example:
– Overwrite a function pointer
– Function pointers are often

used in callbacks

63

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The exploit
• The program takes the first two arguments from the command line
• It copies argv[1] into a buffer with no bounds checking

• It then calls the callback,
passing it the message
from the 2nd argument

The exploit
– Overflow the buffer
– The overflow bytes will contain the

address you really want to call
• They’re strings, so bytes with 0 in

them will not work … making this a
more difficult attack

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 64

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

printf attacks

65March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

printf and its variants
Standard C library functions for formatted output
– printf: print to the standard output
– wprintf: wide character version of printf
– fprintf, wfprintf: print formatted data to a FILE stream
– sprintf, swprintf: print formatted data to a memory location
– vprintf, vwprintf,vfprintf, vwfprintf :

 print formatted data containing a pointer to argument list

Usage
printf(format_string, arguments ...)

printf(“The number %d in decimal is %x in hexadecimal\n”, n, n);
printf(“my name is %s\n”, name);

66March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Bad usage of printf
Programs often make mistakes with printf

Valid:
printf(“hello, world!\n”)

Also accepted … but not right
char *message = “hello, world\n”);
printf(message);

This works but exposes the chance that message will be changed

67

This should be a format string

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dumping memory with printf

68

#include <stdio.h>
#include <string.h>

int show(char *buf)
{
 printf(buf); putchar('\n');
 return 0;
}

int main(int argc, char **argv)
{
 if (argc == 2)
 show(argv[1]);
}

$./tt hello
hello

$./tt "hey: %012lx"
hey: 7fffe14a287f

printf does not know how many arguments it has.
It deduces that from the format string.

If you don’t give it enough, it keeps reading from the
stack

We can dump arbitrary memory by walking up the stack

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

$./tt 0x%08x.0x%08x.0x%08x.0x%08x.0x%08x
0x6ed0cf98.0x6ed0cfb0.0xd4ec1db8.0x17f4ff10.0x17f95040

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Getting into trouble with printf
Have you ever used %n ?

Format specifier that will store into memory the number of bytes written so far
 int printbytes;

 printf("paul%n says hi\n", &printbytes);

Will print
 paul says hi

and will store the number 4 (which is the value of strlen("paul")) into
the variable printbytes

If we combine this with the ability to change the format specifier, we can write
to other memory locations

69March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Bad usage of printf: %n

70

#include <stdio.h>
#include <string.h>

int
show(char *buf)
{
 printf(buf);

putchar('\n');
 return 0;
}

int
main(int argc, char **argv)
{
 char buf[256];

 if (argc == 2) {
 strncpy(buf, argv[1], 255);
 show(buf);
 }
}

Buffer

Pointer to buffer

Return address

Pointer to buffer (printf format)

Return address

sh
ow

pr
in

tf

printf treats this as the 1st parameter after the
format string.
• We can skip ints with formatting strings such

as %x
• The buffer can contain the address that we

want to overwrite

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

Saved frame pointer

Saved frame pointer

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

printf attacks: %n
What good is %n when it’s just # of bytes written?
– You can specify an arbitrary number of bytes in the format string

 printf(“%.622404x%.622400x%n” . . .

Will write the value 622404+622400 = 1244804 = 0x12fe84

What happens?
– %.622404x = write at least 622404 characters for this value
– Each occurrance of %x (or %d, %b, ...) will go down the stack by one parameter (usually 8

bytes). We don‘t care what gets printed
– The %x directives enabled us to get to the place on the stack where we want to change a

value
– %n will write that value, which is the sum of all the bytes that were written

71March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 72

Defending against hijacking attacks
Part 3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fix bugs
• Audit software

• Check for buffer lengths whenever adding to a buffer

• Search for unsafe functions
– Use nm and grep to look for function names

• Use automated tools
– Clockwork, CodeSonar, Coverity, Parasoft, PolySpace, Checkmarx, PREfix,

PVS-Studio, PCPCheck, Visual Studio

• Most compilers and/or linkers now warn against bad usage

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 73

tt.c:7:2: warning: format not a string literal and no format arguments [-Wformat-security]

zz.c:(.text+0x65): warning: the 'gets' function is dangerous and should not be used.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fix bugs: Fuzzing
Do what the attackers do and try to locate unchecked assumptions!

• Generate semi-random data as input to detect bugs
– Locating input validation & buffer overflow problems
– Enter unexpected input
– See if the program crashes

• Enter long strings with searchable patterns

• If the app crashes
– Search the core dump for the fuzz pattern to find where it died

• Automated fuzzer tools help with this
– E.g., libFuzzer and AFL in C/C++; cargo-fuzz in Rust, Go Fuzzing

• Or … try to construct exploits using gdb
March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 74

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++
• Most other languages feature
– Run-time bounds checking
– Parameter count checking
– Disallow reading from or writing to arbitrary memory locations

• Hard to avoid in many cases
– Lots of legacy code
– Performance concerns, CPU load
– Programmer skill, availability of libraries, long-term support
– Top contenders: Rust and Go
• Rust: created by Mozilla – Memory safety with the efficiency of C/C++
• Go: created by Google – fast, compiled code
• Go designed for faster compilation, Rust is designed for faster execution

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 76

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++
• Google’s switch to memory-safe

languages led to the % of memory-safe
vulnerabilities in Android dropping from
76% to 24% over six years.

• Google announced support for Rust in
Android in 2021

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 77

https://thehackernews.com/2024/09/googles-shift-to-rust-programming-cuts.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++
• White House Office of the National Cyber

Director called on developers to use
languages without memory safety
vulnerabilities

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 78

https://www.infoworld.com/article/2336216/white-house-urges-developers-to-dump-c-and-c.html
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 79

https://www.theregister.com/2024/08/03/darpa_c_to_rust/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Ongoing attempts to fix C/C++
• Safe C++ Extensions proposal for inclusion in the C++ standard
– Separate the safe and unsafe parts clearly – keep the safe parts useful
– Don’t break existing code
– Addresses these categories of safety:
• Lifetime safety (preserve objects with references), type safety (initialized vs. uninitialized data),
• Thread safety (synchronization objects aren’t opt-in), runtime checks (array bounds, bad division, bad references)

– Safe Standard Library: Memory-safe implementations of essential algorithms

• TrapC – A propose fork of C
– Removes goto and union
– Adopts a few C++ features that improve safety: Constructors & destructors, member functions
– Automatic memory management
– Limited lifetime for pointers

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 80

TrapC: https://www.infoworld.com/article/3836025/trapc-proposal-to-fix-c-c-memory-safety.html
Safe C++: https://safecpp.org/draft.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Specify & test code
• If it’s in the specs, it is more likely to be coded & tested

• Document acceptance criteria
– “File names longer than 1024 bytes must be rejected”
– “User names longer than 32 bytes must be rejected”

• Use safe functions that check & allow you to specify buffer limits

• Ensure consistent checks to the criteria across entire source
– Example, you might #define limits in a header file but some files might use a

mismatched number.

• Don't allow user-generated format strings and check results from printf

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 81

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Safer libraries
• Compilers warn against unsafe strcpy or printf

• Ideally, fix your code!

• Sometimes you can’t recompile (e.g., you lost the source)
• libsafe
– Dynamically loaded library
– Intercepts calls to unsafe functions
– Validates that there is sufficient space in the current stack frame

 (framepointer – destination) > strlen(src)

82March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: No Execute (NX)
Data Execution Prevention (DEP)
– Disallow code execution in data areas – on the stack or heap
– Set MMU per-page execute permissions to no-execute
– Intel and AMD added this support in 2004

Used in Windows, Linux, and macOS

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 83

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

No Execute – not a complete solution
No Execute Doesn’t solve all problems
– Some legacy applications need an executable stack
– Some applications need an executable heap
• code loading/patching
• JIT (just-in-time) compilers

– NX does not protect against heap & function pointer overflows
– NX does not protect against printf and related format string problems

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 84

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Return-to-libc
• Allows bypassing need for non-executable memory
– With DEP, we can still corrupt the stack … just not execute code from it

• No need for injected code

• Instead, reuse functionality within the exploited app

• Use a buffer overflow attack to create a fake frame on the stack
– Transfer program execution to a library function, running with the "restored" frame pointer
– libc = standard C library … every program uses it!
– Most common library function to exploit: system
• Runs the shell with a specified command
• New frame in the buffer contains a pointer to the command to run (which is also in the buffer)
– E.g., system(“/bin/sh”)

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 85

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Return Oriented Programming (ROP)
• Generalize return-to-libc:

Overwrite the return address on the stack with the address of a library function
– Does not have to be the start of the library routine
• Use “borrowed chunks” of code from various libraries

– When the library gets to a RET instruction, that location is on the stack, under the attacker’s control

• Chain together sequences of code ending in RET
– Build together “gadgets” for arbitrary computation
– Buffer overflow contains a sequence of addresses that direct each successive RET instruction

• An attacker can use ROP to execute arbitrary algorithms without injecting new code
into an application
– Removing dangerous functions, such as system, is ineffective
– To make attacking easier: use a compiler that combines gadgets!
• Example: ROPC – a Turing complete compiler, https://github.com/pakt/ropc

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 86

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows & ROP: ASLR
Addresses of everything in the code were well known
– Dynamically-loaded libraries were loaded in the same place each time, as was the stack &

memory-mapped files
– Well-known locations make them branch targets in a buffer overflow attack

Address Space Layout Randomization (ASLR)
– Position stack and memory-mapped files to random locations
– Position libraries at random locations
• Libraries must be compiled to produce position-independent code

– Implemented in all modern operating systems
• OpenBSD, Windows ≥Vista, Windows Server ≥2008, Linux ≥2.6.15, macOS, Android ≥4.1, iOS ≥4.3

– But … not all libraries (modules) can use ASLR
• And it makes debugging difficult

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 87

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Address Space Layout Randomization
• Entropy
– How random is the placement of memory regions?
– If it's not random enough then attackers can guess

• Examples
– Linux Exec Shield
• 19 bits of stack entropy, 16-byte alignment – resulted in > 500K positions

– Windows 7
• Only 8 bits of randomness for DLLs
– Aligned to 64K page in a 16MB region: resulted in 256 choices – far too easy to try them all!

– Windows 8 onward
• 24 bits for randomness on 64-bit processors: >16M possible placements

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 88

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack

cannot overwrite the return address without changing the canary

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 89

int a, b=999;
char s[5], t[7];

gets(s);

Return addr
a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk

Stack

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack

cannot overwrite the return address without changing the canary

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 90

int a, b=999;
char s[5], t[7];

gets(s);

saved frame pointer

a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk saved frame pointer

CANARY
a
b

s[5]
t[7]

at
 ri

sk

with canary

Stack Stack
parameters

return addr

parameters

return addr

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Refining Stack Canaries: Reordering Variables
IBM’s ProPolice gcc patches – later incorporated into gcc
– Allocate local arrays into higher memory (below) other local variables in the stack
– Ensures that a buffer overflow attack will not clobber non-array variables
– Increases the likelihood that the overflow won’t attack the logic of the current function

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 91

saved frame pointer

a
b

s[5]
t[7]

saved frame pointer

CANARY
s[5]
t[7]
a
b

at
 ri

sk

no canary with canary

Stack Stack
parameters

return addr

parameters

return addr

int a, b=999;
char s[5], t[7];

gets(s);

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Stack canaries
• Not foolproof

• Heap-based attacks are still possible

• Performance impact
– Need to generate a canary on entry to a function

and check canary prior to a return
– Minimal performance degradation ~8% for apache web server

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 92

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Intel CET: Control-Flow Enforcement Technology
Developed by Intel & Microsoft to thwart ROP attacks
– Available starting with the Tiger Lake microarchitecture (mid-2020)

Two mechanisms
1. Shadow stack

– Secondary stack
• Only stores return addresses
• MMU attribute disallows use of regular store instructions to modify it

– Stack data overflows cannot touch the shadow stack – cannot change the control flow

2. Indirect branch tracking

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 93

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Intel CET: Control-Flow Enforcement Technology
Indirect Branch Tracking
– Restrict a program’s ability to use jump tables

– Jump table = table of memory locations the program can branch
• Used for switch statements & various forms of lookup tables

– Jump-Oriented Programming (JOP) and Call Oriented Programming (COP)
• Techniques where attackers abuse JMP or CALL instructions
• Like Return-Oriented Programming but use gadgets that end with indirect branches

– New ENDBRANCH (ENDBR64) instruction allows a programmer to specify valid targets for
indirect jumps
• If you take an indirect jump, it has to go to an ENDBRANCH instruction
• If the jump goes anywhere else, it will be treated as an invalid branch and generate a fault

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 94

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap attacks – Protecting Pointers
• Encrypt pointers (especially function pointers)
– Example: XOR with a stored random value
– Any attempt to modify them will result in invalid addresses
– XOR with the same stored value to restore original value

• Degrades performance when function pointers are used

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 95

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hardware Attacks: Example - Rowhammer

DDR4 memory protections are broken wide open
by new Rowhammer technique
Researchers build "fuzzer" that supercharges potentially serious bitflipping exploits.
Dan Goodin • 11/15/2021

Rowhammer exploits that allow unprivileged attackers to change or corrupt data stored in vulnerable
memory chips are now possible on virtually all DDR4 modules due to a new approach that neuters
defenses chip manufacturers added to make their wares more resistant to such attacks.

Rowhammer attacks work by accessing—or hammering—physical rows inside vulnerable chips
millions of times per second in ways that cause bits in neighboring rows to flip, meaning 1s turn to 0s
and vice versa. Researchers have shown the attacks can be used to give untrusted applications nearly
unfettered system privileges, bypass security sandboxes designed to keep malicious code from
accessing sensitive operating system resources, and root or infect Android devices, among other
things.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 96

https://arstechnica.com/gadgets/2021/11/ddr4-memory-is-even-more-susceptible-to-rowhammer-attacks-than-anyone-thought/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hardware Attacks: Example - Rowhammer
• RowHammer was disclosed in 2014
– Exploits memory architecture to alter data by repeatedly accessing a specific row
– This introduces random bit flips in neighboring memory rows

• 2021: new attack technique discovered
– Uses non-uniform patterns that access two or more rows with different frequencies
– Bypasses all defenses built into memory hardware
– 80% of existing devices can be hacked this way
– Cannot be patched!

• Sample attacks
– Gain unrestricted access to all physical memory by changing bits in the page table entry
– Give untrusted applications root privileges
– Extract encryption key from memory

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 97

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fixed? Nope – introducing ZenHammer
• Manufacturers tried to mitigate this

problem

• But in March, 2024…
– Researchers created a new variant of the

attack
– ZenHammer acts like Rowhammer but

can also flip bits on DDR5 devices

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 98

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 99

Integer Overflow
Part 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Minimum & maximum values for integers

• Arbitrary precision libraries may be available
– But processors don’t do arbitrary precision math, so there’s a performance penalty

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 100

Size Unsigned Signed
8-bit (1 byte) 0 .. 255 -128 .. +127
16-bit (2 bytes) 0 .. 65,535 -32,768 .. +32765
32-bit (4 bytes) 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
64-bit (8 bytes) 0 ..

18,446,744,073,709,551,617
-9,223,372,036,854,775,808 ..
+9,223,372,036854,775,807

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overflows and underflows
Going outside the range causes an overflow or underflow
– No room for the extra bit
– These do not generate exceptions

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 101

11111111
+ 00000001
 100000000

255 + 1 = 0

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Unsigned integer overflow
Bigger than the biggest?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 102

int main(int argc, char **argv)
{
 unsigned short n = 65535;

 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed?

n = 65535
n+1 = 0

max unsigned short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Signed integer overflow
Bigger than the biggest?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 103

int main(int argc, char **argv)
{
 short n = 32767;

 printf(”n = %d\n", n);
 n = n + 1;
 printf(”n+1 = %d\n", n);
}

What gets printed?
n = 32767
n+1 = -32768

max short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Also underflow
Smaller than the smallest?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 104

int main(int argc, char **argv)
{
 short n = -32768;

 printf("n = %d\n", n);
 n = n - 1;
 printf("n-1 = %d\n", n);
}

What gets printed?
n = -32768
n-1 = 32767

max short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Same thing for ints
Bigger than the biggest?

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 105

int main(int argc, char **argv)
{
 short n = 2147483647;

 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed?

n = 2147483647
n+1 = -2147483648

max int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Integer overflow - casts
Casting from unsigned to signed

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 106

int main(int argc, char **argv)
{
 unsigned short n = 65535;
 short i = n;

 printf("n = %d\n", n);
 printf("i = %d\n", i);
}

What gets printed?
n = 65535
i = -1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

So what?
You might not detect a buffer overflow because of an integer overflow

• If working with money:
– Negative account can become positive
– Positive account can become negative

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 107

nresp = packet_get_int();
if (nresp > 0) {
 response = xmalloc(nresp*sizeof(char*));
 for (i = 0; i < nresp; i++)
 response[i] = packet_get_string(NULL);
}

Version 3.3 of OpenSSH

If packet_get_int returns 1073741824
and sizeof(char*) = 4,
we allocate 0 bytes for response!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

But we have 64-bit architectures!
• Even 64-bit values can overflow
– If users can set a field to any value somewhere, they can set it to a huge value

and overflows can occur

• Default int size in C on Linux, macOS = 32 bits

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 108

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Some values are constrained
A lot of data fields in network messages use smaller values

• IP header
– time-to-live field = 8 bits, fragment offset = 16 bits, length = 16 bits

• TCP header
– Sequence #, Ack # = 32 bits, Window size = 16 bits

• GPS week # = 10 bits

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 109

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python 3 has no size limit
• Actual type is hidden from the user
– Internally, an integer (32 or 64 bit, depending on the CPU) is used and is

converted to an arbitrary-length integer object when needed

• But there’s a cost!
– 10B iterations of incrementing an int on an M2 Mac
• C: 4.44 seconds
• Java: 28.8 seconds – 6.4x slower
• Python 237 seconds – 53x slower

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 110

By the way, do you trust Python’s math?

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 111

Patch now! Microsoft releases fixes for the serious
SMB bug CVE-2020-0796
March 12, 2020
…
The SMBv3 vulnerability fixed this month is a doozy: A potentially network-based attack that can bring down Windows servers and
clients, or could allow an attacker to run code remotely simply by connecting to a Windows machine over the SMB network port of
445/tcp. The connection can happen in a variety of ways we describe below, some of which can be exploited without any user
interaction.
…
Microsoft fixes 116 vulnerabilities with this month’s patches, and considers 25 of them critical, and 89 important. All the critical
vulnerabilities could be used by an attacker to execute remote code and perform local privilege elevation.

https://news.sophos.com/en-us/2020/03/12/patch-tuesday-for-march-2020-fixes-the-serious-smb-bug-cve-2020-0796/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2020 SMB Bug: CVE-2020-0796 (SMBGhost)
"The vulnerability involves an integer overflow and underflow in one of the kernel drivers.
The attacker could craft a malicious packet to trigger the underflow and have an arbitrary
read inside the kernel, or trigger the overflow and overwrite a pointer inside the kernel.
The pointer is then used as destination to write data. Therefore, it is possible to get a
write-what-where primitive in the kernel address space."

Bug in the compression mechanism of SMB in Windows 10

Attacker can control two fields
– OriginalCompressedSegmentSize and Offset
– Use a huge value for OriginalCompressedSegmentSize to cause overflow
• This will cause the system to allocate fewer bytes than necessary
• Decompress will cause an overflow

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 112

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2020 SMB Bug: CVE-2020-0796 (SMBGhost)
Program does
memcpy(Alloc->UserBuffer,
 (PUCHAR)Header + sizeof(COMPRESSION_TRANSFORM_HEADER),
 Header->Offset);

Attack
– The decompression into a smaller buffer can overflow the

User buffer
– The target of memcpy (Alloc->UserBuffer) is read from

the allocation header, which can be overwritten
– The Header contents & offset can also be set by the attacker
– The attacker can write anything anywhere in kernel memory!

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 113

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

114

Microsoft Exchange year 2022 bug in
FIP-FS breaks email delivery
Lawrence Abrams • January 1, 2022

Microsoft Exchange on-premise servers cannot deliver email starting on January 1st, 2022, due to a "Year 2022" bug in the
FIP-FS anti-malware scanning engine.

Starting with Exchange Server 2013, Microsoft enabled the FIP-FS anti-spam and anti-malware scanning engine by default
to protect users from malicious email.

Microsoft Exchange Y2K22 bug

According to numerous reports from Microsoft Exchange admins
worldwide, a bug in the FIP-FS engine is blocking email delivery with
on-premise servers starting at midnight on January 1st, 2022.

https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Is .gif a GIF file? Assumptions about file formats
• iOS Messages app
– Any embedded file with a .gif extension will be decoded before the message

is shown
• Sent to the IMTranscoderAgent process that uses the ImageIO library
• The ImageIO library ignores the file name and tries to guess the format to parse it

– Allows attackers to send files in over 20 formats, increasing the attack surface

• This was used in NSO's Pegasus malware on the iPhone
– Zero-click install via iMessages
– Sent a PDF file with a .gif file name
– Contents were compressed with JBIG2 compression

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 115

See https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PDF – JBIG2 Compression – Integer Overflow
• JBIG2 compression
– Extreme compression format for black & white images
– Breaks images into segments
– Contains table with pointers to similar bitmaps

• This attack exploited an integer overflow bug
– With carefully crafted segments, the count of detected symbols could overflow
– This results in the allocated buffer being too small
– Bitmaps are then written into this buffer
– Enables attacker to control what gets written into arbitrary memory

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 116

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PDF – JBIG2 Compression – Integer Overflow

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 117

Guint numSyms; // (1)
numSyms = 0;
for (i = 0; i < nRefSegs; ++i) {
 if ((seg = findSegment(refSegs[i]))) {
 if (seg->getType() == jbig2SegSymbolDict) {

numSyms += ((JBIG2SymbolDict *)seg)->getSize(); // (2)
 } else if (seg->getType() == jbig2SegCodeTable) {
 codeTables->append(seg);
 }
 } else {
 ...
...
// get the symbol bitmaps

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)); // (3)
 kk = 0;
 for (i = 0; i < nRefSegs; ++i) {
 if ((seg = findSegment(refSegs[i]))) {
 if (seg->getType() == jbig2SegSymbolDict) {
 symbolDict = (JBIG2SymbolDict *)seg;
 for (k = 0; k < symbolDict->getSize(); ++k) {
 syms[kk++] = symbolDict->getBitmap(k); // (4)
 }
...

Symbol count can overflow
with too many segments.
numSyms becomes a small #

32-bit symbol count

Allocated buffer becomes too small

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The end

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski 118

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Top Known Exploited Vulnerabilities – 2023
MITRE, a non-profit organization that manages federally-funded research & development centers,
publishes a list of top security weaknesses

124

https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html

Rank Name

1 Use After Free

2 Heap-based Buffer Overflow

3 Out-of-bounds Write

4 Improper Input Validation

5 Improper Neutralization of Special Elements used in an OS Command (OS Command
Injection)

6 Deserialization of Untrusted Data
7 Server-Side Request Forgery (SSRF)
8 Access of Resource Using Incompatible Type ('Type Confusion')

9 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

10 Missing Authentication for Critical Function

March 10, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

March 10, 2025 125CS 419 © 2025 Paul Krzyzanowski

